A role for histone H2B during repair of UV-induced DNA damage in Saccharomyces cerevisiae.
نویسندگان
چکیده
To investigate the role of the nucleosome during repair of DNA damage in yeast, we screened for histone H2B mutants that were sensitive to UV irradiation. We have isolated a new mutant, htb1-3, that shows preferential sensitivity to UV-C. There is no detectable difference in bulk chromatin structure or in the number of UV-induced cis-syn cyclobutane pyrimidine dimers (CPD) between HTB1 and htb1-3 strains. These results suggest a specific effect of this histone H2B mutation in UV-induced DNA repair processes rather than a global effect on chromatin structure. We analyzed the UV sensitivity of double mutants that contained the htb1-3 mutation and mutations in genes from each of the three epistasis groups of RAD genes. The htb1-3 mutation enhanced UV-induced cell killing in rad1Delta and rad52Delta mutants but not in rad6Delta or rad18Delta mutants, which are defective in postreplicational DNA repair (PRR). When combined with other mutations that affect PRR, the histone mutation increased the UV sensitivity of strains with defects in either the error-prone (rev1Delta) or error-free (rad30Delta) branches of PRR, but did not enhance the UV sensitivity of a strain with a rad5Delta mutation. When combined with a ubc13Delta mutation, which is also epistatic with rad5Delta, the htb1-3 mutation enhanced UV-induced cell killing. These results suggest that histone H2B acts in a novel RAD5-dependent branch of PRR.
منابع مشابه
UV damage-induced RNA polymerase II stalling stimulates H2B deubiquitylation.
Histone H2B monoubiquitylation plays an important role in RNA polymerase II (RNAPII) elongation. Whether this modification responds to RNAPII stalling is not yet known. We report that both yeast and human cells undergo a rapid and significant H2B deubiquitylation after exposure to UV irradiation. This deubiquitylation occurs concurrently with UV-induced transcription arrest and is significantly...
متن کاملBre1p-mediated histone H2B ubiquitylation regulates apoptosis in Saccharomyces cerevisiae.
BRE1 encodes an E3 ubiquitin protein ligase that is required for the ubiquitylation of histone H2B at lysine 123 (K123). Ubiquitylation of this histone residue is involved in a variety of cellular processes including gene activation and gene silencing. Abolishing histone H2B ubiquitylation also confers X-ray sensitivity and abrogates checkpoint activation after DNA damage. Here we show that Sac...
متن کاملHow Chromatin Is Remodelled during DNA Repair of UV-Induced DNA Damage in Saccharomyces cerevisiae
Global genome nucleotide excision repair removes DNA damage from transcriptionally silent regions of the genome. Relatively little is known about the molecular events that initiate and regulate this process in the context of chromatin. We've shown that, in response to UV radiation-induced DNA damage, increased histone H3 acetylation at lysine 9 and 14 correlates with changes in chromatin struct...
متن کاملLoss of Histone H3 Methylation at Lysine 4 Triggers Apoptosis in Saccharomyces cerevisiae
Monoubiquitination of histone H2B lysine 123 regulates methylation of histone H3 lysine 4 (H3K4) and 79 (H3K79) and the lack of H2B ubiquitination in Saccharomyces cerevisiae coincides with metacaspase-dependent apoptosis. Here, we discovered that loss of H3K4 methylation due to depletion of the methyltransferase Set1p (or the two COMPASS subunits Spp1p and Bre2p, respectively) leads to enhance...
متن کاملHistone Sprocket Arginine Residues Are Important for Gene Expression, DNA Repair, and Cell Viability in Saccharomyces cerevisiae.
A critical feature of the intermolecular contacts that bind DNA to the histone octamer is the series of histone arginine residues that insert into the DNA minor groove at each superhelical location where the minor groove faces the histone octamer. One of these "sprocket" arginine residues, histone H4 R45, significantly affects chromatin structure in vivo and is lethal when mutated to alanine or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 160 4 شماره
صفحات -
تاریخ انتشار 2002